Fourier Series
Orthogonallity
Heat Equation
Parabolic Equations
Laplace's/Wave Equation
Elliptical/Hyperbolic Equations
Numerical Solutions
Finite Difference Methods
Date
Sec
Lecture
8/20
H/O
Introduction/Classification
of PDEs
9/7
1.1
1.2
1.3
Derivation of Heat Equation
10/3
2.5
Heat Equation (2D - 3D)
Laplace's Equation
11/14
6.2
Finite Difference Equations
8/22
2.3
Separation of Variables
9/10
1D Ht Eqn with T=0 Ends
10/5
11/16
(continued)
8/24
Orthogonal Functions
9/12
Worked Example
10/10
MATLAB - TBD
11/19
6.3
6.4
FD Schemes/HtEqn 1D
8/27
3.1
3.2
9/14
2.4
HtEqn with Insulated Ends
10/12
4.2,3
Derivation of Wave Equation
11/21
6.5
FD Schemes/HtEqn 2D
8/29
3.3
Fourier Sin/Cos Series
9/17
HtEqn in Thin Circular Ring
10/15
4.4
Vibrating String/Fixed Ends
11/26
FD Schemes/Wave Eqn
8/31
3.4
Differentiation of FS
9/19
Supplementary Problems
10/17
Klein Gordon Equation
11/28
---
FD Schemes/LaPlace Eqn
9/4
3.5
Integration for FS
9/21
10/19
Telegraph Equation
11/30
9/5
MATLAB Intro/Review
9/24
8.1/2
HtEqn - Non-zero Temp Ends
10/22
8.3
Non-Homogeneous Wave Problem
12/03
9/26
HtEqn w/Heat Source
10/24
7.3
Vibrating Membrane
12/05
9/28
H/0
10/26
(continueed)
10/1
Test 1
10/29
Test Review
10/31
Test 2
11/2
11/5
7.7
Vibrating Circular Membrane
11/7
Bessel Functions
11/10
7.8
More on Bessel Functions